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Abstract. Given a graded partially ordered set P, let wk(P) and Wk(P) denote its
Whitney numbers of the first and second kind respectively. We call a graded partially
ordered set Q a Whitney Dual of P if |wK(P)| = WK(Q) and Wk(P) = |wk(Q)| for all
k. In this extended abstract, we show that every geometric lattice has a Whitney dual.
This is done constructively, using edge labelings and quotient posets.
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1 Introduction

Throughout this abstract we will assume that all our partially ordered sets (or posets) are
finite, graded, and contain a minimum element (denoted by 0̂). Moreover, ρ will be used
to denote the rank function. Recall that for a poset P, the Möbius function is defined
recursively by

µ(x, y) =

1 if x = y,
− ∑

x≤z<y
µ(x, z) if x 6= y.

The Whitney numbers of the first kind wk(P) are defined by

wk(P) = ∑
ρ(x)=k

µ(0̂, x),

and the Whitney numbers of the second kind Wk(P) are defined by

Wk(P) = ∑
ρ(x)=k

1.

We assume that the reader is familiar with poset and poset topology terminology, see [8,
9] for background and notation.

The authors of [4] noticed in their study of the poset of weighted partitions, Πw
n , that

the Whitney numbers of Πw
n were closely related to the Whitney numbers for the poset

Fn of rooted spanning forests on [n] already studied by D. Reiner in [6] and B. Sagan in
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[7]. The surprising fact was that the Whitney numbers of the first and second kind of
Πw

n were (up to a sign) the same as the Whitney numbers of the second and first kind of
Fn. That is |wK(Πw

n )| = WK(Fn) and Wk(Πw
n ) = |wk(Fn)|. This phenomenon occurs for

many other pairs of posets and motivates the following definition.

Definition 1. Let P and Q be graded posets. We say that P and Q are Whitney Duals if
for all k ≥ 0 we have that

|wk(P)| = Wk(Q) and |wk(Q)| = Wk(P).

According to this definition Πw
n and Fn are Whitney Duals. We now discuss another

example.

Example 1. Let Πn denote the poset whose underlying set is formed by the set partitions
of [n] with order relation given by π ≤ π′ whenever every block of π is contained in
some block of π′. We say that the partitions are ordered by refinement and we call Πn
the partition lattice. In Figure 1a we illustrate the Hasse diagram of Π3 together with the
Möbius values µ(0̂, π) next to each element π.

Now let T be a tree with vertices labeled by distinct integers. We call the smallest
vertex of T the root. We say T is an increasing tree if the sequence of vertex labels read
along any path starting at the root of T is increasing. An increasing spanning forest is
a collection of increasing trees whose vertex labels form a partition of [n]. The word
“spanning" here indicates that these forests are spanning forests of the complete graph.
Let ISFn be the set of increasing spanning forests on [n]. We define a partial order on
ISFn by saying that F1 l F2 if exactly two trees in F1 are replaced by the tree in F2 that
is obtained after joining their roots with an edge. Note that the root of the resulting tree
is the smaller label among the roots of the two joined trees. Figure 1b illustrates the
Hasse diagram of ISF 3 together with its Möbius values. For more information about
increasing spanning forests see [5].

k wk(Πn) Wk(ISFn) wk(ISFn) Wk(Πn)
0 1 1 1 1
1 −3 3 −3 3
2 2 2 1 1

Table 1: Whitney numbers of the first and second kind for Π3 for ISF 3.

When the Whitney numbers of Π3 and ISF 3 are listed side by side (see Table 1), we
see that they are indeed Whitney duals. Later, we will see that for n ≥ 1, Πn and ISFn
are Whitney duals (see Proposition 4).
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Figure 1

The rest of the paper is organized as follows. In Section 2, we consider some examples
of Whitney duals. We pay particular attention to Πn and ISFn. In Section 3, we explain
how to use edge labelings and quotient posets to construct Whitney duals for posets
which posses a certain type of edge labeling that we call an EW-labeling. We also show
in this section that every geometric lattice has an EW-labeling and hence a Whitney dual.
We finish with a section on future work.

2 Examples of Whitney Duals

2.1 Eulerian posets, self-duality, and posets without Whitney duals

A graded poset P is Eulerian if µ(x, y) = (−1)ρ(y)−ρ(x) for all x ≤ y in P. Thus, in an
Eulerian poset we have that |wk(P)| = Wk(P) for all k. Therefore, every Eulerian poset
has a Whitney dual, namely itself. It is natural to ask if all posets which are their own
Whitney dual are Eulerian. The poset in Figure 2a shows that this is not the case 1. This
leads to the question of whether there is a natural characterization of self Whitney-dual
posets.

Not every ranked poset has a Whitney dual. For example, consider the three element
chain C in Figure 2b. We have that w2(C) = 0 and W2(C) = 1. If Q was a Whitney dual
of C, then |w2(Q)| = 1 and W2(Q) = 0, which is clearly impossible. This illustrates the
fact that a poset P with |wk(P)| = 0 for some k smaller than the rank of the poset cannot

1We thank Cyrus Hettle from University of Kentucky for pointing out this example to the authors.
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Figure 2: Examples of self Whitney-duality and a poset without Whitney dual

have a Whitney dual.

2.2 Edge labelings and Whitney duality

We now discuss edge labelings and their relation with Whitney numbers. First, let
us recall some basic facts about edge labelings. For complete treatments on the topic,
see [1, 3, 8]. Let P be a poset, and let E(P) be the set of edges of the Hasse diagram of P.
Moreover, let Λ be an arbitrary fixed poset that will be considered as the poset of labels.
An edge labeling of P is a map λ : E(P)→ Λ.

Let P be a poset with edge labeling λ. For any saturated chain

c : (x = x0 l x1 l · · ·l x`−1 l x` = y)

there is a corresponding word of labels

λ(c) = λ(x0, x1)λ(x1, x2) · · · λ(x`−1, x`).

We say that c is increasing if its word of labels λ(c) is strictly increasing, that is, c is
increasing if

λ(x0, x1) < λ(x1, x2) < · · · < λ(x`−1, x`).

We say that c is ascent-free if its word of labels λ(c) has no ascents, i.e. λ(xi, xi+1) 6<
λ(xi+1, xi+2), for all i = 0, . . . , `− 2. Clearly there can be chains that are neither increas-
ing nor ascent-free.

Definition 2. An edge labeling is an ER-labeling if in each closed interval [x, y] of P, there
is a unique increasing maximal chain (in [8] this type of labeling is called an R-labeling).
By analogy, we say that an edge labeling is an ER∗-labeling if in each closed interval
[x, y] of P, there is a unique ascent-free maximal chain.

The following theorem due to R. Stanley provides a relation between ER and ER∗-
labelings and the Möbius function in a poset P.
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Theorem 1 (c.f. Theorem 3.14.2 in [8]). Let P be a poset with an ER-labeling (ER∗-labeling).
Then

µ(x, y) = (−1)ρ(y)−ρ(x)|{c | c is an ascent-free (increasing) maximal chain in [x, y]}|.

Using Definition 2 and Theorem 1, we can describe the Whitney numbers of a poset
with an ER-labeling (ER∗-labeling) by the enumeration of saturated chains as follows.

Proposition 1. Let P be a poset with an ER-labeling (ER∗-labeling). Then |wk(P)| is the number
of ascent-free (increasing) saturated chains starting at 0̂ of length k. Moreover, |Wk(P)| is the
number of increasing (ascent-free) saturated chains starting at 0̂ of length k.

With this proposition in mind, it seems natural to use edge labelings to understand
Whitney duals. We illustrate this concept with Πn and ISFn next.

2.3 Πn and ISF n

In order to prove that Πn and ISFn are Whitney duals, we are going to describe an ER-
labeling on Πn and an ER∗-labeling on ISFn. Recall that if π l σ is a covering relation
in Πn , then σ is obtained from π by merging two blocks of π.

Definition 3. Let λ : E(Πn)→ [n]× [n] be the edge labeling defined by λ(π l σ) = (i, j)
where i < j and i and j are the minimum elements of the two blocks of π that were
merged to obtain σ and [n] × [n] has the lexicographic order induced by the natural
order of [n]. This labeling is a special case of Björner’s minimum labeling for geometric
lattices described in [2]. In Figure 1a the labeling λ of Π3 is depicted.

Proposition 2 (c.f. [2]). The labeling λ : E(Πn)→ [n]× [n] of Definition 3 is an ER-labeling.

Now consider an ER∗-labeling of ISFn. We will use the convention that an edge of
the complete graph is an ordered pair (i, j) with i < j.

Definition 4. We define an edge labeling λ∗ : E(ISFn)→ [n]× [n] by setting λ∗(F1 l F2)
to be the unique edge in F2 which is not in F1. Figure 1b depicts the labeling λ∗ of ISF 3.

The labels for each cover relation of ISFn indicate the two roots of the trees that
get connected. Similarly, in each cover relation of Πn the labels indicate what are the
smallest elements of the two blocks that were merged. Note that the two roots of an
increasing forest have the smallest labels in their connected components. If we think of
the connected components as blocks of a partition, we see λ and λ∗ are closely related.
We also have that any maximal chain in a fixed interval, in both of these posets, is
completely determined by its word of labels.

Proposition 3. The labeling λ∗ : E(ISFn)→ [n]× [n] of Definition 4 is an ER∗-labeling.
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Proof. Let F ∈ ISFn and suppose the edges of F are (im, jm) > (im−1, jm−1) > · · ·
> (i1, j1), ordered lexicographically. Let Fk be the forest with edges (im, jm), (im−1, jm−1),
· · · , (im−k+1, jm−k+1) (note that F0 is the graph with no edges). Then for all k, Fk is a
subforest of F. Since subforests of increasing spanning forests are increasing spanning
forests (see [5]), each Fk is an increasing spanning forest. Note that there is unique edge
in Fk not in Fk−1. We claim that this edge connects two roots. Suppose we are creating Fk
from Fk−1. Then we add the edge (im−k+1, jm−k+1). Let T be the tree containing im−k+1
and let r be the root of T. If r 6= im−k+1, then at some point as we built up T, we added an
edge containing r. Since im−k+1 > r this edge preceded (im−k+1, jm−k+1) in lexicographic
order. This is impossible by how we constructed the Fk’s. Thus im−k+1 is the root. Also,
if jm−k+1 were not a root, then adding the edge (im−k+1, jm−k+1) would create a subforest
of F which is not increasing. Thus, F0 l F1 l · · ·l Fm is a maximal chain in the interval
[0̂, F] which has an ascent-free word of labels. Since every chain in [0̂, F] is labeled by
(im, jm), (im−1, ij−1), · · · , (i1, j1) and since the word of labels completely determines the
chain, we see that [0̂, F] has a unique ascent-free maximal chain. Now observe that
every interval [F, G] is isomorphic to an interval of the form [0̂, F′], where F′ is obtained
from F by contracting the vertices from each connected component of F and labeling
the contracted set of vertices with the label of the root of the component. Therefore, the
above argument shows that every interval has a unique ascent-free maximal chain and
hence λ∗ is an ER∗-labeling.

Proposition 4. The posets Πn and ISFn are Whitney duals.

Proof. First we explain why using λ and λ∗ there are the same number of increasing
saturated chains starting at 0̂ in Πn and ISFn and the same number of ascent-free
saturated chains starting at 0̂ in Πn and ISFn. Let c be a saturated chain starting at
0̂ in Πn. As we move up the chain, the labels indicate the minimum elements of the
two blocks being merged. The sequence of labels as we move up also describes a way
to create an increasing spanning forest. Here the blocks of the partitions correspond
to the trees in the forest. When we merge two blocks we connect the roots of the two
corresponding trees. It follows that for every saturated chain in Πn starting at 0̂, there
is a saturated chain in ISFn starting at 0̂ with the same word of labels. This chain is
unique since saturated chains in ISFn starting at 0̂ are completely determined by their
word of labels. This correspondence between saturated chains in Πn starting at 0̂ and
saturated chains starting at 0̂ in ISFn is therefore a bijection. Moreover, this bijection
preserves the word of labels. Therefore there are the same number of increasing (ascent-
free) saturated chains in Πn starting at 0̂ and increasing (ascent-free) saturated chains in
ISFn starting at 0̂. Proposition 1, implies that Πn and ISFn are Whitney duals.

As we will see in the next section, the situation for constructing Whitney duals for
general posets follows the same principle that we just described for Πn and ISFn.
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Suppose we want to show that P and Q are Whitney duals. We define edge labelings
on P and Q in such a way that the labeling on P is an ER-labeling and the one on Q
is an ER∗-labeling. If these posets, under the two labelings, have the same number of
increasing (ascent-free) saturated chains starting at 0̂, then Proposition 1 implies that P
and Q are Whitney duals.

3 Constructing Whitney Duals

3.1 EW-labelings

In this section, we will show how to construct Whitney duals for certain posets. We will
need edge labelings with the following property.

Definition 5. Let λ be an ER-labeling. We say λ has the rank two switching property
provided that for every interval [x, y] with ρ(y)− ρ(x) = 2, if ab is the word of labels
of the unique increasing chain in the interval, then there exists a unique chain in [x, y]
whose word of labels is ba.

In Figure 1a, one can see that the labeling of Π3 given in Definition 3 has the rank
two switching property. Indeed, the increasing chain in the unique rank two interval of
Π3 is labeled by (1, 2), (1, 3) and there is a unique chain labeled by (1, 3), (1, 2). In fact,
Πn has the rank two switching property for all n ≥ 1. One can verify this using the fact
that every rank two interval is either isomorphic to Π3 or a boolean algebra of rank two.
More generally, for every geometric lattice there is a labeling which has the rank two
switching property (see Proposition 10). By repeatedly applying the rank two switching
property we get the following lemma.

Lemma 1. Let P be a poset and let λ be an ER-labeling with the rank two switching property.
For every interval [x, y] and every maximal chain c in [x, y] there exists an ascent-free maximal
chain c′ in [x, y] with the same multiset of labels as c.

We now introduce the notion of an EW-labeling, where the letter “W" comes from
the fact that it will provide sufficient conditions to construct a Whitney dual.

Definition 6. Let λ : E(P)→ Λ be an ER-labeling of P with Λ a total order. We say λ is
an EW-labeling if the following holds.

1. λ has the rank two switching property.

2. For each interval [x, y], if c and c′ are distinct ascent-free maximal chains in [x, y],
then the multisets of labels for c and c′ are different.
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Remark 1. The reason for using an overline on EW is that in a forthcoming paper on
Whitney duals we define an EW-labeling by relaxing condition 2 in Definition 6 and the
requirement of Λ to be a totally ordered set. In the case of geometric lattices these two
stronger conditions greatly simplify the discussion and proofs.

As we commented after Definition 5, the labeling of Πn given in Definition 3 has
the rank two switching property. Moreover, the edge labels come from a lexicographical
order which is a total order. Finally, the sequence along any maximal chain uniquely
identifies that chain and so any two different ascent-free maximal chains in any interval,
cannot have the same set of labels. It follows that the labeling in Definition 3 is an
EW-labeling.

We now turn our attention to quotient posets which is the next piece of the puzzle
we need to construct Whitney duals.

3.2 Quotient posets

Definition 7. Let P be a graded poset and let ∼ be an equivalence relation on P such that
if x ∼ y, then ρ(x) = ρ(y). We define the quotient poset P/ ∼ to be the set of equivalence
classes ordered by X ≤ Y if and only if there exists x ∈ X, y ∈ Y and z1, z2, . . . , zk ∈ P
such that

x ∼ z1 ≤ z2 ∼ z3 ≤ · · · ≤ zk−2 ∼ zk−1 ≤ zk ∼ y.

The next proposition follows from Definition 7.

Proposition 5. Let P be a graded poset and let ∼ be an equivalence relation on P such that if
x ∼ y, then ρ(x) = ρ(y). Then we have the following.

1. P/ ∼ is a graded poset.

2. For X ∈ P/ ∼, we have ρ(X) = ρ(x) for all x ∈ X.

3. For X, Y ∈ P/ ∼, X lY if and only if x l y for some x ∈ X and y ∈ Y.

Given a poset P, let C(P) denote the poset whose elements are saturated chains of P
starting at 0̂ ordered by inclusion. We call C(P) the chain poset of P. Figure 3 depicts Π3
and C(Π3). Suppose that λ is an edge labeling of P. If c ∈ C(P), we write S(c) to denote
the underlying multiset of labels along c. Additionally, we write e(c) for the element of
P where c terminates. Let ∼λ be the equivalence relation on C(P) defined by c1 ∼λ c2
whenever, e(c1) = e(c2) and S(c1) = S(c2). We use Qλ(P) to denote C(P)/ ∼. In our
example of Π3, every element of C(Π3) is in its own equivalence class except for the
chains 1/2/3l 12/3l 123 and 1/2/3l 13/2l 123 since they both terminate at 123 and
have the same underlying (multi)set of labels. Taking the quotient to obtain Qλ(Π3), we
see that we get a Whitney dual of Π3 isomorphic to ISF 3. Figure 3c depicts Qλ(Π3)
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Figure 3

where we have identified the equivalence classes by the underlying set of labels on the
chains.

Note that by the definition of ∼λ and Lemma 1, each equivalence class X ∈ Qλ(P)
corresponds to a unique ascent-free maximal chain in [0̂, e(X)]. In fact this correspon-
dence is a bijection between ascent-free saturated chains starting at 0̂ in P of length k and
equivalence classes in Qλ(P) of rank k. The following proposition immediately follows.

Proposition 6. Let λ be an EW-labeling. Then |wK(P)| = Wk(Qλ(P)).

Suppose that λ is an edge labeling of P. We will define an edge labeling λ∗ on Qλ(P)
that depends on λ. Note that by definition, c ∼λ c′ implies S(c) = S(c′). In light of this,
we will use S(X) to denote the multiset of labels in any chain in X. Moreover, if X l Y
in Qλ(P) then there exists a unique element in S(Y) \ S(X). Define an edge labeling λ∗

on Qλ(P) by
λ∗(X lY) = S(Y) \ S(X). (3.1)

This edge labeling for Qλ(Π3) appears in Figure 3c.
Since all the saturated chains inside an equivalence class X of Qλ(P) terminate at the

same element of P, we can define e(X) to be e(c) for any c ∈ X. Additionally, we will use
C(x, y) for the set of maximal chains in [x, y] and CS(x, y) for the set of maximal chains
in [x, y] whose multiset of labels is S. For example, for Π3 with labeling λ depicted in
Figure 1a, C{(1,2),(1,3)}(1/2/3, 123) = {1/2/3 l 12/3 l 123, 1/2/3 l 13/2 l 123}.

Proposition 7. Let λ be an EW-labeling of P, [X, Y] an interval in Qλ(P), and S = S(Y) \
S(X). There is a bijection ϕ : C(X, Y) → CS(e(X), e(Y)) that preserves the word of labels on
the chains.

Remark 2. It is important to first fix the interval [X, Y]. In general it is not true that
chains in [x, y] map to unique chains in Qλ(P).
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Proof. Let ϕ : C(X, Y) → CS(e(X), e(Y)) be defined by sending X = X1 l X2 l · · · l
Xk = Y to e(X) = e(X1) l e(X2) l · · · l e(Xk) = e(Y). We claim ϕ is well-defined.
To see this, note that if Xi l Xi+1 then by Proposition 5 there are chains c ∈ Xi and
c′ ∈ Xi+1 with c l c′ in C(P). By definition of C(P) we have that e(c) l e(c′) and
c′ = c ∪ {e(c′)}. Therefore e(X1)l e(X2)l · · ·l e(Xk) is saturated chain in [e(X), e(Y)].
Recall that λ∗(Xi l Xi+1) is the unique element of S(Xi+1) \ S(Xi). But then this must
also be S(c′) \ S(c) which is exactly the value of λ(e(Xi) l e(Xi+1)). It follows that
ϕ(X1 l X2 l · · ·l Xk) is a maximal chain in [e(X), e(Y)] with label multiset S(Y) \ S(X),
and hence ϕ is well-defined. This argument also shows that ϕ preserves the word of
labels.

Next, we show ϕ is injective. Suppose that X1 l X2 l · · ·l Xk and X′1 l X′2 l · · ·l X′k
are maximal chains in [X, Y] which have the same image under ϕ. Then e(Xi) = e(X′i)
for all i. If X1 l X2 l · · · l Xk 6= X′1 l X′2 l · · · l X′k, then there is a minimal i such
that Xi 6= X′i . Since X1 = X = X′1, it must be that i > 1. But then S(Xi) \ S(Xi−1) =
λ(e(Xi−1) l e(Xi)) = S(X′i) \ S(X′i−1). Since Xi−1 = X′i−1, this implies that S(Xi) =
S(X′i). However, if e(Xi) = e(X′i) and S(Xi) = S(X′i), then Xi = X′i , a contradiction. It
follows that ϕ is injective.

Finally, we show ϕ is surjective. Let e(X) = x1 l x2 l · · ·l xk = e(Y) be a maximal
chain in [e(X), e(Y)] with label multiset S = S(Y) \ S(X). Additionally, let c be any
element of X. Define ci to be the chain c∪{x1, x2, . . . , xi}. Then c = c1 l c2 l c2 l · · ·l ck
is a saturated chain in C(P) with e(ci) = xi. Note that by construction, S(ck) = S(Y).
Let Xi be the equivalence class in Qλ(P) containing ci, then X1 l X2 l · · · l Xk is a
saturated chain in Qλ(P) with e(Xi) = xi. Clearly X1 = X. Moreover, we have that
e(Xk) = xk = e(Y) and S(Xk) = S(ck) = S(Y). Therefore, Xk = Y. So we have that
X = X1 l X2 l · · ·l Xk = Y is a chain in [X, Y] and it is a preimage of x1 l x2 l · · ·l xk
implying ϕ is surjective.

By Lemma 1 and Definition 6, if P has an EW-labeling, then for every interval [x, y] in
P and every maximal chain c in [x, y] with label multiset S, there is a unique ascent-free
maximal chain in [x, y] with label multiset S. Therefore, Proposition 7 implies that every
interval [X, Y] in Qλ(P) has a unique ascent-free chain. Thus we have the following.

Proposition 8. Let P be a poset and let λ be an EW-labeling. Then λ∗ defined as in (3.1) is an
ER∗-labeling of Qλ(P).

Assume now that λ is an EW-labeling and that X1, X2, . . . , Xn are the different ele-
ments of Qλ(P) that satisfy e(Xi) = x for all i. If there is an increasing maximal chain
in [0̂, Xi], then by Proposition 7 there is an increasing maximal chain in [0̂, x] with label
multiset S(Xi). Since there is exactly one increasing maximal chain in [0̂, x] and since (by
the definition of ∼λ) S(Xi) 6= S(X j) for all i 6= j, there is exactly one Xi such that [0̂, Xi]
has an increasing maximal chain. We then have that the number of increasing saturated
chains starting at 0̂ and of length k in Qλ(P) is equal to the number of elements x ∈ P
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with ρ(x) = k and hence equal to the number of increasing saturated chains starting at
0̂ and of length k in P. Proposition 1 then implies the following proposition.

Proposition 9. Let P be a poset and λ be an EW-labeling of P. Then Wk(P) = |wK(Qλ(P))|.

Combining Propositions 6 and 9 together we obtain our main theorem.

Theorem 2. Let P be a poset with an EW-labeling λ. Then Qλ(P) is a Whitney dual of P.

3.3 Whitney duals of geometric lattices

Next we show that every geometric lattice has an EW-labeling. The labeling we discuss
was originally introduced by Björner [2].

Definition 8. Let L be a geometric lattice with set of atoms A(L). Fix a total order on
A(L). Now define λ : E(L)→ A(L) by setting λ(x l y) = a where a is the smallest atom
such that x ∨ a = y. We call λ a minimum labeling of L.

Proposition 10. For any geometric lattice L a minimum labeling of L is an EW-labeling.

Proof. It was shown in [2] that a minimum labeling is an ER-labeling. Also, for any
interval [x, y] the labels along any maximal chain uniquely determine the chain since
one can read off the elements of the chain by taking joins of x with the labels along the
chain. Thus it suffices to show that a minimum labeling has the rank two switching
property.

Let λ be a minimum labeling of L, let [x, y] be an interval of rank two and suppose
that ij is the word of labels of the increasing chain, x l x ∨ i l x ∨ i ∨ j = y. Since L is
geometric and j is an atom not underneath x, xl x∨ jl y. Observe that λ(xl x∨ j) = j,
since if this was not the case, this would imply λ(x ∨ i l y) < j which is a contradiction.
Moreover, i is not below x∨ j and i is below y. Since there is a unique increasing chain in
[x, y], i is the smallest atom that appears as a label in [x, y]. It follows that λ(x∨ jl y) = i.
We conclude that the chain x l x ∨ j l y has the word of labels ji. Since joins are unique,
there is only one chain in [x, y] with word of labels ji and thus any minimum labeling
satisfies the rank two switching property.

We have the following theorem as a corollary.

Theorem 3. Every geometric lattice has a Whitney dual.

4 Future Work

The conditions necessary for an EW-labeling are somewhat restrictive. While the rank
two switching property is fundamental to our construction of Whitney duals, the other
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conditions can be relaxed. In upcoming work, the authors will explore posets which
have a more flexible version of an EW-labeling. This allows one to construct Whitney
duals for a larger family of posets. The weighted partition poset, which motivated this
work, is part of this family.
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